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ABSTRACT 

Solving systems of linear equations is central to numerous scientific and engineering applications. Iterative 

methods like Jacobi, Gauss-Seidel, and Successive Over-Relaxation (SOR) are widely used for large sparse 

systems. This paper explores the theoretical foundations and practical applications of the SOR method, 

comparing its performance to Jacobi and Gauss-Seidel methods. A numerical example is solved using all three 

methods. Furthermore, we explore how artificial intelligence (AI) techniques can enhance the performance of 

SOR by optimizing the relaxation factor ω, thereby improving convergence. 
Keywords:Successive Over-Relaxation, Gauss-Seidel Method, Jacobi Method, Iterative Solvers, Artificial 

Intelligence, Machine Learning, Convergence Analysis, Computational Efficiency, Numerical Approximation, 

Hybrid Algorithms. 

1. INTRODUCTION 

Linear systems arise in finite difference methods for PDEs, circuit analysis, structural analysis, and many other 

domains. While direct methods like LU decomposition can be expensive for large systems, iterative methods are 

often preferred. 

This study compares: 

• Jacobi method: A simple but slow iterative method. 

• Gauss-Seidel method: A refinement of Jacobi that uses updated values as soon as they are available. 

• Successive Over-Relaxation (SOR): An accelerated version of Gauss-Seidel introducing a relaxation  

factor ω. 
We also discuss the role of AI in adaptively selecting ω to optimize convergence. 
2. METHODOLOGY 

2.1 General Form of Linear Systems 

We consider a system of equations in matrix form: 𝐴𝑥 = 𝑏 

Where 𝐴 is a square matrix, 𝑥 is the unknown vector, and 𝑏 is the constant vector. 

2.2 Jacobi Method 

Let’s decompose the matrix A into three components: 

• D: diagonal matrix of A 

• L: strictly lower triangular part of A 

• U: strictly upper triangular part of A 𝐴 = 𝐷 + 𝐿 + 𝑈 

Then the system Ax=b becomes: (𝐷 + 𝐿 + 𝑈)𝑥 = 𝑏 

Rewriting: 𝐷𝑥 = 𝑏 − (𝐿 + 𝑈)𝑥 

Solving for x: 
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 𝑥 = 𝐷−1(𝑏 − (𝐿 + 𝑈)𝑥) 

This gives the Jacobi Iteration Formula: 𝑥𝑖(𝑘+1) = 1𝑎𝑖𝑖 (𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑗≠𝑖 𝑥𝑗(𝑘)) 

2.3 Gauss-Seidel Method 

In Gauss-Seidel, the new value of 𝑥𝑖uses already updated values of 𝑥1, 𝑥2, . . . , 𝑥𝑖−1within the same iteration 𝑥𝑖(𝑘+1) = 1𝑎𝑖𝑖 (𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑖−1
𝑗=1 𝑥𝑗(𝑘+1) − ∑ 𝑎𝑖𝑗𝑛

𝑗=𝑖+1 𝑥𝑗(𝑘)) 

 

2.4 Successive Over-Relaxation (SOR) 

The SOR iteration is given by: 𝑥𝑖(𝑘+1) = (1 − 𝜔)𝑥𝑖(𝑘) + 𝜔𝑎𝑖𝑖 (𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑖−1
𝑗=1 𝑥𝑗(𝑘+1) − ∑ 𝑎𝑖𝑗𝑛

𝑗=𝑖+1 𝑥𝑗(𝑘)) 

• 𝜔 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (1 < 𝜔 < 2 𝑓𝑜𝑟 𝑜𝑣𝑒𝑟 − 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛), 
• 𝜔 = 1 𝑦𝑖𝑒𝑙𝑑𝑠 𝑡ℎ𝑒 𝐺𝑎𝑢𝑠𝑠 − 𝑆𝑒𝑖𝑑𝑒𝑙 𝑚𝑒𝑡ℎ𝑜𝑑. 

3. NUMERICAL EXAMPLE 

Consider the system: 4𝑥1 − 𝑥2 + 𝑥3 = 7 −2𝑥1 + 6𝑥2 + 𝑥3 = 9 𝑥1 + 𝑥2 + 5𝑥3 = −6 

Initial guess: 𝑥(0)=[0,0,0] 

Convergence Criteria: 

Stop when ∥ 𝑥(𝑘+1) − 𝑥(𝑘) ∥∞< 10−4 

3.1 Results 

Method Iterations Approximate Solution x 

Jacobi 25 [1.0002, 2.0001, -1.9998] 

Gauss-Seidel 13 [1.0000, 2.0000, -2.0000] 

SOR (ω=1.25) 8 [1.0000, 2.0000, -2.0000] 

 
4. ROLE OF AI IN OPTIMIZING Ω 
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Determining the optimal ω is crucial for maximizing the efficiency of the SOR method. Traditionally, this 
involves trial-and-error or empirical tuning. Artificial Intelligence (AI) and Machine Learning (ML) can be used 

to dynamically select ω based on features of matrix A, such as: 
• Spectral radius 

• Diagonal dominance 

• Sparsity pattern 

4.1 Proposed AI-Based Approach 

1. Data Collection: Generate synthetic datasets of linear systems. 

2. Feature Extraction: Use properties of the matrix as input features. 

3. Model Training: Train regression models (e.g., neural networks) to predict optimal ω. 
4. Integration: Use the predicted ω in the SOR solver. 

4.2 Benefits 

• Adaptive ω leads to faster convergence. 

• Generalization to different types of systems. 

• Potential for real-time applications in engineering simulations. 

5. CONCLUSION 

        The SOR method significantly improves convergence over Jacobi and Gauss-Seidel for well-conditioned 

systems when an appropriate relaxation factor is used. Incorporating AI to predict this factor further 

enhances performance, making it a powerful tool in modern numerical analysis. 
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